

refuels – Raw Materials, Processes and Applications for Synthetic Fuels

Ulrich Arnold, Kathrin Hackbarth, Philipp Haltenort, Jörg Sauer

COMSYN European 2nd Generation Biofuels - Opportunities and Applications

1st Workshop of the European Project COMSYN German Aerospace Center (DLR) Stuttgart - INERATEC GmbH and KIT Karlsruhe, April 18-19, 2018

Institute of Catalysis Research and Technology (IKFT)

Content

Legislative background

Technological background

OME fuels

- Molecular structure & fuel properties
- OME synthesis: State of the art
- Comparison of OME production processes
- Current work

Challenges

Summary & outlook

Legislative background (I)

Main driver for biofuel activities in Germany: Climate protection by low-carbon technologies, CO_2 use and efficient renewable fuels and products from biomass and electricity

^{*}upper target value

©DBFZ 12/2016 based on Climate protection plan of German Federal Government 11/2016

Торіс	EU Directives
Energy Carrier • Renewable energy mandates	Fixed in RED 2009/28/EG with 10% RE in 2020 and FQD with 6% CO_2 -eq reduction by 2020; No sector-related targets for post-2020 (1990-2030: -40% GHG, 27% renewable energies, 27% improvement of energy efficiency)
 Legislation for renewable fuels 	RED: 7% cap for biofuels based on food crops, i/dLUC, sustainability criteria and methodology for GHG, min. 60% GHG reduction for new plants
 Taxes for fuels 	Energy Taxation Directive (ETD)
Energy Infrastructure	Clean Power for Transport Directive (CPD) Alternative Fuels Infrastructure Directive (AFID)
Vehicles Legislation for vehicle emission standards 	CO ₂ regulations 2020 on tank-to-wheel basis, fleet averages for manufacturers: 95 g/km passenger cars / 120 g/km for HDV EURO VI emission regulations for HC, CO, NO _x , PM
 Incentives for low emission vehicles 	Individual incentives for EU member countries

Technological background (I)

Synthesis of (bio)fuels from various resources via synthesis gas (CO/H_2)

B. Niethammer, S. Wodarz, M. Betz, P. Haltenort, D. Oestreich, K. Hackbarth, U. Arnold, T. Otto, J. Sauer, "Alternative liquid fuels from renewable resources", *Chem. Ing. Tech.* **2018**, *90*, 99-112.

Technological background (II)

Synthesis of fuels and fuel additives from (bio)methanol

F. Asinger, Methanol – Chemie- und Energierohstoff, Springer, Berlin, 1986.

Why OME fuels?

- Absence of carbon-carbon bonds
- Non-toxic, non-corrosive
- Properties similar to diesel

Molecular structure of OMEs:

M. Härtl, K. Gaukel, D. Pélerin, G. Wachtmeister, E. Jacob, "Oxymethylenether als potenziell CO_2 -neutraler Kraftstoff für saubere Dieselmotoren Teil 1: Motorenuntersuchungen", *MTZ Motortech. Z.* **2017**, *78*(2), 52-59.

=> soot-free combustion

- => safe handling
- => good miscibility with diesel

Elimination of soot-NO_x trade-off:

 $H = \begin{pmatrix} H \\ C \\ H \end{pmatrix} = \begin{pmatrix} H \\ C \\ H \end{pmatrix} = \begin{pmatrix} H \\ C \\ H \end{pmatrix} = \begin{pmatrix} H \\ C \\ H \end{pmatrix}$ Variation of an end group (methyl, ethyl, acetate) Variation of chain length Variation of aldehyde (formaldehyde \rightarrow acetaldehyde)

Variation of aldehyde

Acetaldehyde + methanol:

1,1-Dimethoxyethane: No detailed fuel investigations

Acetaldehyde + ethanol:

1,1-Diethoxyethane:

- Diesel: Soot reduction only
- Efficient octane enhancer

• F. Frusteri, L. Spadaro, C. Beatrice, C. Guido, "Oxygenated additives production for diesel engine emission improvement", Chem. Eng. J. 2007, 134, 239-245. • M.-Z. Vagabov, R. Vagabov, Z. Mangueva, F. Latypova, E. Rakhmankulov, "Use of 1,1-diethoxyethane for increasing knocking resistance of automotive gasoline", WO 2012/143465 A1, 2012.

• L. Lautenschütz, "Neue Erkenntnisse in der Syntheseoptimierung oligomerer Oxymethylendimethylether aus Dimethoxymethan und Trioxan", Dissertation, University of Heidelberg, **2015**.

• L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus, J. Sauer, "Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers", *Fuel* **2016**, *173*, 129-137.

Variation of end group

Molecular structure & fuel performance (III)

Variation of chain length	b.p. (°C)	D _{20°C} (kgm ⁻³)	CN	
	OME ₀ Dimethylether (DME)	-24	735 (–25 °C)	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OME ₁ Dimethoxymethane (DMM) Methylal	42	859	28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OME ₂	105	977	68
H H H H H H - C-O-C-O-C-O-C-H H H H H H	OME ₃	156	1030	72
H H H H H H H-C-O-C-O-C-O-C-O-C-H H H H H H H	OME ₄	202	1074	84
H H H H H H H H-C-O-C-O-C-O-C-O-C-O-C-H H H H H H H H	OME ₅	242	1106	93
H = H = H = H = H = H = H = H = H = H =	OME _{>5}	waxy	not determined	

Cetane numbers of OMEs

D. Deutsch, D. Oestreich, L. Lautenschütz, P. Haltenort, U. Arnold, J. Sauer, "High Purity Oligomeric Oxymethylene Ethers as Diesel Fuels", *Chem. Ing. Tech.* **2017**, *89(4)*, 486-489.

OME synthesis: State of the art

Anhydrous pathways

- Reactions starting from DMM
- High OME selectivity
- Low amounts of byproducts
- Comparatively simple product separation
- Costly starting materials

- Reactions starting from methanol
- Low-cost starting materials
- Formation of byproducts (hemiacetals)
- Removal of water

Aqueous pathways

L. Lautenschütz, D. Oestreich, P. Haltenort, U. Arnold, E. Dinjus, J. Sauer, "Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites", *Fuel Process. Technol.* **2017**, *165*, 27-33.

OME synthesis: DMM + trioxane

Reaction conditions:19 g DMM, 7.5 g trioxane, 0.075 g Amberlyst 36, T = 60 °C

OME synthesis: Methanol + formaldehyde

Reaction conditions: 40 g MeOH, 60 g formaldehyde (5% water), 1.0 g Amberlyst 36, T = 80 °C

OMEs from methanol + formaldehyde Continuously operating laboratory plant

- Continuous long-term operation
- Variable temperatures and pressures
- Defined feed compositions
- Recording of concentration profiles
- Recording of temperature profiles
- Analysis via online-GC/MS
- Catalyst long-term testing
- Kinetic modelling

D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, "Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OMEs) from methanol and formaldehyde", *Chem. Eng. Sci.* **2017**, *163*, 92-104.

Run at 90% of maximum methanol conversion Reaction conditions: p-FA/MeOH = 3:2 g/g, T = 40 °C, p = 0.1 MPa, Dowex50Wx2 (200-400 mesh)

OMEs from methanol + formaldehyde Reaction & Extraction

- U. Arnold, L. Lautenschütz, D. Oestreich, J. Sauer, EP 2 987 781 A1, 2016.
- D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, "Production of oxymethylene dimethyl ether (OME)-hydrocarbon fuel blends in a one-step synthesis/extraction procedure", *Fuel* **2018**, *214*, 39-44.

OME synthesis: DME + trioxane

Reaction conditions: $n_{\text{trioxane}}/n_{\text{DME}} = 0.25, 0.4 \text{ wt\%}$ H-BEA 25, 80 °C

Mass fractions of OME_{1-5} vs. time

Direct insertion of trioxane into DME

Formation of OME_n mixtures in secondary reactions (transacetalization)

80 °C, 18 bar, $n_{\text{trioxane}}/n_{\text{DME}} = 0.25, 0.4 \text{ wt\%}$ catalyst

- Efficient OME synthesis from DME with zeolite H-BEA as catalyst
- Accordance with other experimental and theoretical findings for DMM + trioxane
 - P. Haltenort, K. Hackbarth, D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, "Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane", *Catal. Commun.* **2018**, *109*, 80-84.
 - T.J. Goncalves, U. Arnold, P.N. Plessow, F. Studt, "Theoretical Investigation of the Acid Catalyzed Formation of Oxymethylene Dimethyl Ethers from Trioxane and Dimethoxymethane", ACS Catal. **2017**, *7*, 3615-3621.

Comparison of OME production processes

Main process steps starting from methanol

Current work

OME synthesis

- Optimization of OME synthesis from DME
- Theoretical investigations on catalysts for OME synthesis

Fuel applications

- Combination of OMEs with other fuels
- Investigations on (storage) stability

Chemical modification of OMEs

- Variation of end groups
- Modification for non-fuel applications

Life cycle assessment with updated technological data

- In the Power-to-X context
- Entire process chain starting from renewable resources (e.g. woody biomass)

Summary & Outlook

- Soot + NO_x + CO_2 reduction possible
- Comprehensive data on high-purity OMEs are available yet
- OME synthesis from DMM and trioxane is highly developed
- Recent progress in OME synthesis from methanol or DME
- Data for process design available to a large extent
- Up-scaling feasible in the near future
- There is still a large potential for optimization
 - Separation of OMEs
 - Recycling of byproducts
 - Removal of water

Acknowledgements

- P. Haltenort
- K. Hackbarth
- D. Oestreich
- L. Lautenschütz
- J. Sauer
- D. Deutsch
- S. Silbernagel-Donath

Fachagentur Nachwachsende Rohstoffe / BMEL

Joint research project (FKZ 22403814):

Oxymethylene ethers (OME): Eco-friendly diesel additives from renewables

Bundesministerium für Ernährung und Landwirtschaft