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1. Introduction – Micro structured membrane reactors for hydrogen production 

2. On-site steam methane reforming – The µ-Enhancer 

3. Dehydrogenation of liquid organic hydrogen carriers – The system MCH / TOL 

4. Simplified modeling of a micro channel membrane reactor will wall-coated catalyst 

1. Derivation of the governing equations 

2. Flexible solution using Matlab® 

5. Some points to remember 

AGENDA 
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SMALL CAPACITY HYDROGEN SUPPLY  
AN OPPORTUNITY FOR NEW TECHNOLOGY SUCH AS 

MEMBRANE REACTORS 
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Hydrogen supply 
< 500 m³/h 

on-site 

Hydrogen supply < 80.000 m³/h 
High pressure and purity (~10-20 bar, >99.999%) 

Dittmeyer & Schödel, ICCMR-11, 2013 



WHY MEMBRANE REACTORS IN HYDROGEN 
PRODUCTION? 
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• Equilibrium shift 
• Integrated purification 

Steam methane reforming more energy-efficient, 
lower OPEX 

simpler process, 
reduced CAPEX 



BENCHMARK IN MEMBRANE-ASSISTED SMR  
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Modular reformer system:  
40 mN

3/h H2 

Tokyo Gas Modules: 

Senju hydrogen station, Tokyo 

Yasuda et al., 2005, ICCMR-7, Cetraro 

Kurokawa et al., 2010, Demonstration of Highly-Efficient 
Distributed Hydrogen Production from Natural Gas with CO2 
Capture, WHEC2010, Essen 



WHY MICRO FABRICATION? 
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Benefits: 
•Very large membrane surface area per catalyst volume (ca. 103 – 106 m-1) 
•Negligible mass transport resistance towards membrane even for high-flux membranes 
•Efficient heating by hot gas or catalytic combustion of retentate with air 
•High compactness / low weight / modular plant design 
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KIT‘s µ-EnH2ancer project 

• Preparation of defect-free membranes 
• Concepts for thermal and mechanical stability 

• Membrane integration by laser welding 
• H2 permeation experiments 
• Mass transport performance 3) 

• Preparation of Rh/Al2O3 catalysts 
• Activity and stability tests 
• Reaction kinetics without membrane In
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1) Boeltken et al., CE&P: Process Intensif. 67 (2013) 136-147 
2) Lee et al., Appl. Catal. A:Gen. 467 (2013) 69-75 
3) Boeltken et al., J. Membr. Sci. 468 (2014) 233-241 
4) Boeltken et al., Int. J. Hydr. Energy 41 (2014) 18058-18068 
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MODULAR MEMBRANE REACTOR DESIGN 

Pre-reforming stage 
• Cracking of higher hydrocarbons (natural gas) 
• Build-up of H2 partial pressure (by reforming) 
Reforming stage 
• Reforming 
• H2 separation 
Retentate combustion zone 
• Heat transfer to the reforming zone 
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REAL MODULE AND CHANNEL FORMAT 

• Modules built from high-temperature corrosion-resistant 
material (Nicrofer) 

• Microchannels by chemical etching (500 x 200 µm) 

• Thin palladium foil, i.e., typically 12 µm, sandwiched 
between two etched microsieves to provide mechanical 
stability 

• Microsieves coated with inorganic diffusion barrier layer to 
prevent membrane degradation at high temperature 

• Catalyst layers by inkjet printing (10-15 µm, 50 mm pre-
reforming, 70 mm reforming/membrane)  
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SELECTED RESULTS - CONVERSION VERSUS 
HYDROGEN RECOVERY 

Variation of retentate pressure; W/F = 0.33 gCat h / mol CH4; S/C = 3 

Conversion is close to equilibrium 
considering the fraction of hydrogen 
removed 

Activity of catalyst high 
enough to respond to 
H2 removal 

Boeltken et al., Int. J. Hydr. Energy, 2014, 39, 18058-18068. 
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COMPARISON TO PREVIOUS / OTHER SYSTEMS 

• Highest hydrogen production rate per membrane area 
• High volumetric hydrogen production rate 
• Very compact  41/66 m-1 

1) Uemiya et al., Appl. Catal. 1991, 67, 223 - 230.  
2) Tong et al., Catal. Today 2006, 111, 147 - 152.  
3) Hwang et al., Int.  J. Hydr. Energy 2012, 37, 6601 - 6607.  
4) Shirasaki et al., Int. J.Hydr. Energy 2009, 34, 4482 - 4487.  
5) Fernandez et al., Int. J. Hydr. Energy 2017, 42, 13763-13776. 
6) Mahecha-Botero et al., Chem. Eng. Sci. 2008, 63, 2752-2762.  Boeltken et al., Int. J. Hydr. Energy, 2014, 39, 18058-18068. 
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NEW SYSTEM WITH FLUIDIC HEATING ESTABLISHED 

Dittmeyer et al., ICIM-14 2016 
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NEW MODULES 

• all plates fabricated  
• microchannel plates awaiting coating with new catalyst 
• new porous metal-supported membranes in preparation 

Dittmeyer et al., ICCMR-13 2017 
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IMRET 2018, OCT. 21-24, KARLSRUHE 
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RH/AL2O3 CATALYSTS BY FLAME SPRAY PYROLYSIS 

a  Rh loading derived from ICP-OES.  
b  From H2 uptake in chemisorption assuming 

a stoichiometry of H/Rh = 1.  
c  Ratio of active Rh from H2 chemisorption 

and Rh content from ICP-OES.  
d  From metal dispersion by H2 chemisorption.  
e  From TEM measurements. 
f  Derived from TEM results.  

Yu et al., Appl. Catal. B: Environ. 2016, 198, 171–179.  
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PLANAR METAL-SUPPORTED PD MEMBRANES 

In cooperation with Forschungszentrum Jülich (Martin Bram, IEK-1) 

Test specimen 

Transfer to membrane 
reformer modules 

Testing unit 

• Pd: ca. 4 - 12 µm (foil or SPS 
coating) 

• 8-YSZ: ca. 20 - 40 µm 
• Sinter metal: ca. 1 mm 

Boeltken et al., CE&P 2013, 67,136-147 
Dittmeyer et al., ICCMR-13 2017 

Concept 
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POROUS SHEETS FROM CROFER 22 APU BY TAPE 
CASTING / SINTERING 

• Porosity: 27 ± 4% (29.5 ± 0.9%) 
• Thickness: 1.08 ± 0.05 mm 

• N2 permeability: 0.162 ± 0.003 
µmol/m/s/Pa 

• N2 permeance: 1.5×10-4 mol/m2/s/Pa 

Forschungszentrum Jülich (Martin Bram, IEK-1) 
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COATING WITH POROUS 8YSZ 

Forschungszentrum Jülich (Martin Bram, IEK-1, Paul Kant, IMVT) 
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Forschungszentrum Jülich (Martin Bram, IEK-1, Paul Kant, IMVT) 

Layer thickness derived from SEM (MatlabⓇ routine) 

SINGLE VERSUS DOUBLE LAYER COATING 
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DOUBLE LAYER COATING 

Forschungszentrum Jülich (Martin Bram, IEK-1, Paul Kant, IMVT) 

Double coating avoids thinning of layer close to weld seam 
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DOUBLE LAYER COATING 

Forschungszentrum Jülich (Martin Bram, IEK-1, Paul Kant, IMVT) 

Nice smooth surface for 
coating with thin Pd or Pd 
alloy layer 
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SUSPENSION PLASMA SPRAYING OF PD 
NANOPARTICLES 

In cooperation with the German Aerospace Center (Sayed-Asif Ansar, Dirk Ullmer, TT, Stuttgart) 

• Stable suspension of Pd 
nanoparticles obtained 

• Injection system and plasma 
parameters being optimised 

• First coating experiments 
performed on test specimen (Pd 
layers are not yet gastight) 

• Transfer to membrane reformer 
modules 

Boeltken et al., J. Membr. Sci. 2014, 468, 233-241. 
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MEMBRANE MICROREACTOR FOR MCH 
DEHYDROGENATION 

Application background 

Liquid organic reaction cycle 
(LORC) for long-term storage of 
intermediate temperature heat 

Kreuder et al., Catal. Today, 2015, 242, 211-220. 

MCH dehydrogenation 
to toluene: 

Catalyst: 1 wt.-% Pt/γ-Al2O3 
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Microchannel Reactor – Catalyst testing 

Kreuder et al., Catal. Today, 2015, 242, 211-220. 

Influence of pressure on the deactivation rate.  
T = 325°C. modified contact time W/F 4000 kg s m-3 (1 bar) 
and 750 kg s m-3 (9 bar). MCH/N2 50/50. 

• Kinetic studies in BERTY-type recycle reactor showed 
much slower deactivation by carbon formation 
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Micro Packed-Bed Membrane Reactor – First Design 

Kreuder et al., Int. J. Hydr. Energy, 2016, 41, 12082-12092. 
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CATALYST DEACTIVATION BY COKING 

Effect of hydrogen on deactivation. W/F = 250 kg s m-3.  

Carbon content stable around 0.8 wt.-% (TGA, 400°C, BERTY reactor, up to 25 
h) 

350°C, 9 bar 
back permeation of H2 in 
entrance region 

348°C, 1 bar 
perfect back mixing, i.e., H2 
concentration at reactor effluent level 

400°C, 9 bar  
no back mixing, i.e., low H2 partial 
pressure in entrance region 

after use 

fresh 
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REGNERATION IN PLACE 

Procedure 
• 1 h treatment in a flow of 5 ml/min air plus 50 ml/min N2 for during off the deposits 
• 1 h treatment in a flow of 50 ml/min H2 for reduction of the catalyst surface 

T = 400°C.  
PRet = 9 bar.  
W/F = 250 kg·s·m-3.  
XEq. = 99%. 

Kreuder et al., Int. J. Hydr. Energy, 2016, 41, 12082-12092. 



029 

MODIFIED PACKED-BED DESIGN 

Reduced bed height of 0.5 mm / enlarged area 

Kreuder et al., Int. J. Hydr. Energy, 2016, 41, 12082-12092. 

On-going work: 

• Further optimisation of reactor geometry 
based on simulations (optimised bed 
height, longer packed bed section). 

• Catalyst improvement regarding coking. 

• Scale-up and test in integrated process. 

T = 350°C. PRet = 28-31 bar. W/F = 125 kg·s·m-3. 
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WALL-COATED REACTION CHANNEL - UNIVERSAL 
APPROACH  
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FREE CHANNEL VOLUME 

CSTR material balance for component i: 
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FREE CHANNEL VOLUME 

new flow velocity u(x+dx) for ideal gas 
and constant pressure: 

total volume flow to/from layer 

total molar flux to/from layer 

in material balance: 

concentration on the surface is given 
by reaction/diffusion inside layer 
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DOUBLE  LAYER WITH ADJACENT PD MEMBRANE 

now, the situation with 
Pd membrane: 
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FREE CHANNEL VOLUME (REACTION SIDE) 

CSTR material balance component i (reaction side): 

same approach: 
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FREE CHANNEL VOLUME (REACTION SIDE) 

the membrane flux connects both compartments: 

here ji,M is positiv if hydrogen enters the reaction compartment via the membrane  
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FREE CHANNEL VOLUME (REACTION SIDE) 

again, new flow velocity u(x+dx) for 
ideal gas and constant pressure: 

total volume flow to/from layer 

total molar flux to/from layer 

total molar flux to/from permeate 

total volume flow to/from permeate 
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FREE CHANNEL VOLUME (REACTION SIDE) 

in material balance: 

concentration on the surface is given by reaction/diffusion inside layer 

concentration in the permeate (has to be determined by permeate side material balance)  
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FREE CHANNEL VOLUME (PERMEATE SIDE) 

CSTR material balance component i (permeate side): 

so, permeate side: 
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FREE CHANNEL VOLUME (PERMEATE SIDE) 

here as well, new flow velocity up(x+dx) for ideal gas and constant pressure: 

total molar flux to/from permeate 

total volume flow to/from permeate 

note that pressure p here is the permeate pressure, which is in general different from the reaction side pressure 
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FREE CHANNEL VOLUME (PERMEATE SIDE) 

in material balance: 

again, note that pressure p here is the permeate pressure, which is in general different from the reaction side pressure 
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REACTION / DIFFUSION INSIDE LAYER 

Standard ODE (constant diffusivity): 

• different diffusivities Di in the two layers can be handled via position-dependent effective diffusivity Di(y)  
• the presence of different catalysts in the two layers can also be handled via position-dependent catalyst mass 

concentrations ρCat,j(y)  

now, we need to solve 
the ODE for the layer: 
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NON-DIMENSIONAL FUNCTION F WITH 2 PARAMETERS 

Effective diffusivity as step function: 

Catalyst mass concentrations as step functions: 
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ODE SYSTEM FOR POSITION-DEPENDENT DIFFUSIVITY 
DI(Y)  

influx outflux source term 

extra term 
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ODE SYSTEM FOR POSITION-DEPENDENT DIFFUSIVITY 
DI(Y)  

where: 

and: 

due to: 
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BOUNDARY CONDITIONS 

Boundary conditions: 

y=0 y=hCore+hShell 

infinite mass 
transfer rate 

finite mass 
transfer rate 

concentration 
in bulk phase 

concentration on top of double layer 
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CONNECTING ODE SYSTEM WITH CSTR MATERIAL 
BALANCE 

Case 1: infinite mass transfer rate 

flux from/to layer is expressed with the concentration gradient at top of the double layer 

where: 



047 

EVALUATION 

rearranging: 

• cH2,p(x+dx) is found from the hydrogen material balance for permeate side for given sweep gas flow rate, permeate 
pressure and reaction side hydrogen concentration.  

• owing to Sievert's law this requires the solution of a nonlinear equation. 
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MATLAB PROGRAM - STRUCTURE 

Flexible approach - 1D cascade of cells with the option to limit the concentration change per cell via 
step size control 

• solved profiles for one cell are used as initial guess for subsequent cell 

• mole flows in both compartments are updated based on solved profiles 

• graphics for monitoring progress of the calculation 

• material balance checks  

• heat balance not yet implemented 

• pressure drop along channel neglected 

bvp4c - reliable boundary value problem solver with adaptive grid 

• CSTR material balance and membrane transport integrated in the definition of the boundary conditions 

• nonuniform catalyst distribution and effective diffusivity - two distinct layers approximated by S-shaped 
distribution function 

Exchangeable kinetics and permeation 
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Matlab Program – Graphical Output 
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CONCLUSIONS 

First commercial applications of membrane reactors may appear in 
•small-capacity hydrogen production for industrial uses via on site reforming (low pressure, moderate purity),  
•hydrogen generation from LOHC in the context of hydrogen logistics,  

rather than in large-scale reforming or WGS. 
 

•Transport effects may have a big influence on reactor performance (yield, selectivity, space time yield, etc.); 
this holds especially for membrane reactors where the reactions kinetics should not only match the usual heat 
and mass transport rates but also the permeation kinetics. 

•Matlab is a flexible platform for building your own customised models for „multiscale“ reactor simulation 
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Consortium Partners 

Thank you for your attention 

FOR MORE INFORMATION:  
roland.dittmeyer@kit.edu 
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