VTT

High quality (bio) fuels and chemicals via Fischer-Tropsch synthesis

Matti Reinikainen

5/27/2019 VTT – beyond the obvious

1

Contents

Biodiesel:

- Three main technologies how do they differ ?
- Introduction to Fischer-Tropsch-synthesis:
 - What are the raw materials and products ?
 - How much renewable feed is needed ?
 - How is the process?
- Properties of Fischer-Tropsch fuels:
 - Typical properties of FT-fuels
 - How can they be upgraded ?
- Chemicals via FT-synthesis:
 - Light olefins
 - BTX and other possibilities
- CO₂ as the carbon source ?

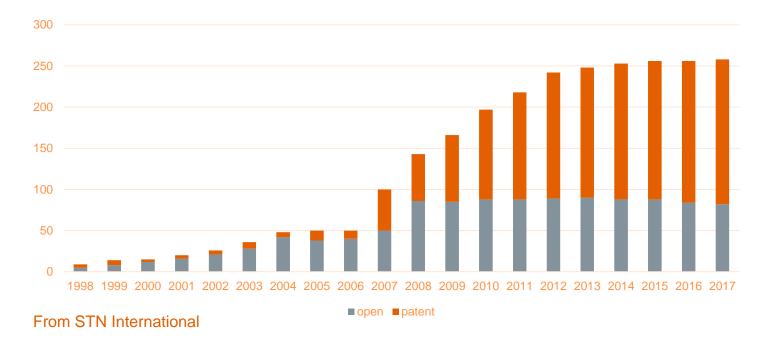
Types of biodiesel

	FAME	Fossil diesel	HVO	Fischer-Tropsch
Raw material	Rapeseed or other vegetable oils	Mineral oil	Vegetable oils or waste fats (animal or vegetable)	Biomass, wastematerials
Process	Esterification	Refinery	HDO	Gasification + FT
Product	1st generation biodiesel	Hydrocarbon	Aliphatic hydrocarbon	Aliphatic hydrocarbon
Compounds	Esters	Hydrocarbons	Hydrocarbons	Hydrocarbons
Commercial availability	Very limited	Yes	Yes	FT-diesel Yes, from biomass No

General properties of biodiesels

FAME	HVO	FT
Methyl esters	Hydrocarbons	Hydrocarbons
 Restricted blending with fossil fuel (<7 vol-%, EN590) Limited long-term stability Heat value 37-38 MJ/kg Not suitable as jet fuel 	 Compatible with all vehicles Can be blended Stable Heat value >42 MJ/kg Emission reduction Can be refined to any fuel 	 Compatible with all vehicles Can be blended Stable Heat value >42 MJ/kg Emission reduction Can be refined to any fuel

Gasification



FT-diesel fuel Methanol, DME Gasoline, jet-fuel Hydrogen Synthetic methane Chemicals

Industrial kilns co-firing in boilers Gas turbines Fuel cells

High quality final products

Biomass gasification to fuels: Indicative trend of number of patents and open publications / year

Biomass gasification to fuels/chemicals: patent countries

China				, ,				
United States of America								
World Intellectual Property Org	ganization (WIPO)							
Japan i i i								
European Patent Office								
WO.African Intellectual Prope	rty Organization (OA	.PI)						
Canada								
Australia								
Republic of Korea								
India								
Germany								
Russian Federation								
Brazil								
Mexico								
South Africa								
France								
<mark>Spa</mark> in								
0 200 400 600 80	0 1000 1200	1400 1600		000 2200	2400	2600	2800	3000
		Cou	nt					

Tai	iwan						
wc).African	Region	al Indu	ıstrial F	roperty	Organiz	ation
Sin	gapore						
Nev	w Zealan	nd					
Uni	ited King	Idom					
No	way						
Th	e Hong K	(ong Sp	ecial A	Adminis	strative	Region (ofthe
Fin	land						
Vie	tnam						
Isra	el						
Sw	eden						
Ital	У						
Aus	stria						
Ma	laysia						
Arg	entina						
РН							
Net	therlands	\$					
o	200	400	600	800	1000	1200	140

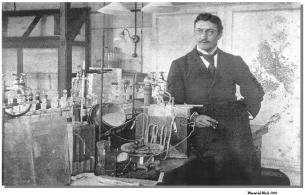
Existing biomass-based plants

A good source for current status of:

- Biomass gasification based
- Biomass pyrolysis based and
- Thermochemical / biotechnical hybrid plants and demo projects

can be found at <u>http://demoplants.bioenergy2020.eu</u> supported by the IEA Bioenergy Task 39 – Commercializing Conventional and Advanced Transport Biofuels from Biomass and Other Renewable Feedstocks

VTT

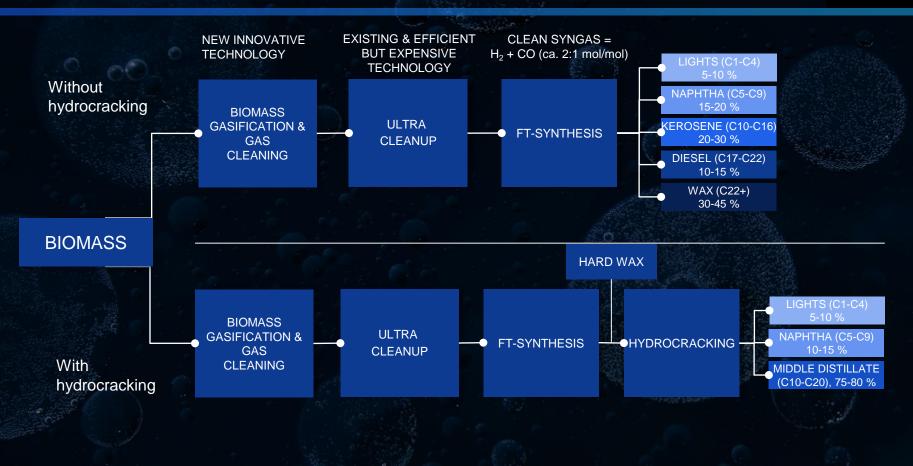

Biomass as raw material for the synthesis gas route

- In principal, syngas reactions are not dependent on the raw material, but relevant differences still exist:
 - There is less experience in biomass gasification
 - Biomass gasification plants are generally at least one order of magnitude smaller than coal or natural gas fueled plants:
 - For instance Shell-Pearl GTL-plant 140 000 bpd; 400 MW BTL-plant would be ca. 4 000 bpd
 - Gasification and gas cleaning constitute a decisive part of the investment cost
 - Loss of economy of scale
 - Different kind of impurities (tars, ca. 100 ppm sulphur...)
 - Variation in the H/C ratio
 - Product upgrading (best product in small scale?)

Short history of the Fischer-Tropsch synthesis

VTT

Franz Fischer at Work in 1918


Dr. Franz Fischer und Dr.-Jng. Hans Tropsch in Mülheim, Ruhr Verlahren zur Gewinnung mehrgliedriger Parafflinkohlenwasserstoffe aus Kohlenoxyden und Wasserstoff auf katalytischem Wege Patentiert im Deutschen Reiche vom 22. Juli 1925 ab

- 1902 Sabatier and Senderens: CO+H₂ -> CH₄ with Ni catalyst
- 1923 Fischer and Tropsch: CO+H₂ to liquid, Co, Fe and Ru catalysts
- 1925 First patent
- 1936 First commercial plant (Germany)
- 1944 Product peaks in Germany 16000 bpd, production also in Finland, raw material peat (catalyst of G. Komppa)
- 1947-53 Production in the USA
- 1955 Sasol 1 (800 bpd) in Southern Africa
- 1975 New plants in USA
- 1980 Sasol 2 (150 000 bpd), iron catalyst
- 1993 Shell Middle Distillate Process, Malesia
- 2000- Smallish BTL processes
- At the moment several large GTL and CTL projects

Reactions in the Fischer-Tropsch synthesis

- Paraffin: (2n+1)H₂ + nCO --> C_nH_{2n+2} + nH₂O
- This can be written also as a polyerisation of methylene monomer:
 - $(CO + 2H_2) \rightarrow -(CH_2-)_n + nH_2O$
- Olefin: $2n H_2 + nCO --> C_n H_{2n} + nH_2O$
- Alcohols: $2n H_2 + nCO + C_nH_{2n+1}OH + (n-1) H_2O$
- Shift: $CO + H_2O --> CO_2 + H_2$
- Boudouard: 2CO --> C + CO₂
- Coke: H₂ + CO --> C + H₂O
- Heterogeneously catalysed three phase reaction (gas-solid-liquid)
- Highly exothermic (deltaH = -165 kJ/mol)
- Restricted by mass transfer and heat removal
- Large amount of water (1.3 kg / 1 kg of HCs) is formed as a "side"-product

Fischer-Tropsch-synthesis

Some challenges of the FT-reaction

- Even if you aim at producing diesel you get at least 25 % of other products and you must find good use for all of them
- High investment cost of the plant
 - Fairly complicated process
 - Cobalt catalysts used in the manufacture of FT-wax are very sensitive to sulphur and other impurities
- The reaction is highly exothermic and the reaction heat must be controlled and utilized

h le	Percent by weight of			Percent by weight of	
e	<c10< th=""><th>c₁₀-c₂₀</th><th>>c₂₀</th><th><c10< th=""><th>c₁₀-c₂₀</th></c10<></th></c10<>	c ₁₀ -c ₂₀	>c ₂₀	<c10< th=""><th>c₁₀-c₂₀</th></c10<>	c ₁₀ -c ₂₀
)	62.4	31.8	5.8	63.6	36.4
ō	45.6	38.9	15.5	48.7	51.3
)	26.4	37.1	36.5	33.7	66.3
5	8.6	19.8	71.7	22.9	77.1
3 .	1.6	4.9	93.5	20.3	79.7
9	0.4	1.4	98.2	20.0	80.0

Logistic challenge of a large plant

A 260 MW (effective fuel power) FT-plant integrated with a pulp and paper mill could produce about 105 000 metric tons of diesel fuel/year which equals ca. 3 % of Finnish transport fuel consumption. (About 5.2 kg of wood is needed for 1 kg of FT-product.)

A typical trailer truck used in Finland has a payload of about 35 metric tons or 115 m³.

About 45-50 additional truckloads day of wood chips (moisture content 40 %) would be needed to feed a plant of this size

的主义的现在分词的一些。

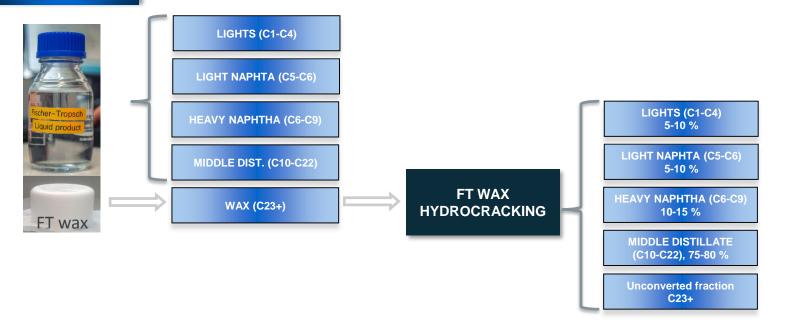
Typical composition of FT-crude (w-%)

Product fraction	Carbon range	Compound class	Fe-HTFT	Co-LTFT
Tail gas	C1 C2	Paraffin Olefin Paraffin	12.7 5.6 4.5	5.6 0.1 1.0
LPG	C3-C4	Olefin Paraffin	21.2 3.0	3.4 1.8
Naphtha	C5-C10	Olefin Paraffin Aromatic Oxygenate	25.8 4.3 1.7 1.6	7.8 12.0 0 0.2
Distillate	C11-C22	Olefin Paraffin Aromatic Oxygenate	4.8 0.9 0.8 0.5	1.1 20.8 0 0
Residue/wax	>C22	Olefin Paraffin Aromatic Oxygenate	1.6 0.4 0.7 0.2	0 44.6 0 0
Aqueous product	C1-C5	Alcohol Carbonyl Carboxylic acid	4.5 3.9 1.3	1.4 0 0.2

Modified from: Maitlis P. M., de Klerk A., Greener Fischer-Tropsch Processes for fuels and Feedstocks,

Wiley-VCH, 2013, p. 83.

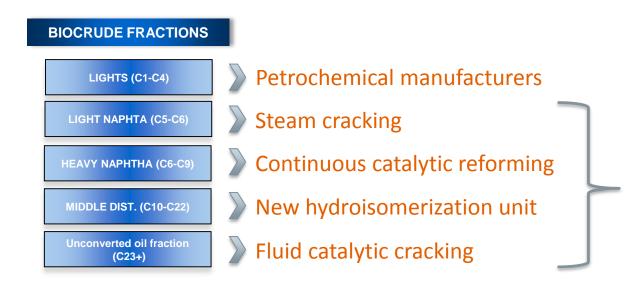
Fischer-Tropsch fuel properties


Highly n-paraffinic

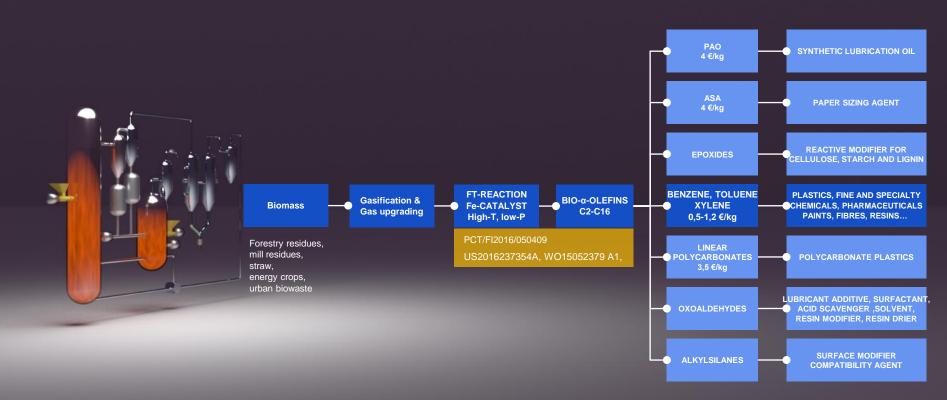
- Can be refined to very high quality fuels using existing techniques
 - For diesel n-alkanes have bad cold properties and isomerisation is needed
 - Density often lower than that of fossil fuel due to the lack of aromatics
 - For gasoline octane number needs to be increased by reforming
- No sulphur, no heavy metals or other catalyst poisons
- FT-product is always a mixture and always also gasoline and gases are produced
- In general, quality is as good or better as that of fossil fuels

VTT

Biocrude upgrading


FT BIOCRUDE

Feasible process can only be achieved if all fractions can be upgraded successfully at the refinery.


Process integration to oil refinery

Refining must be planned according to the existing possibilities at the refinery. Take at look at a public report of EU-FLEXCHX-project: http://www.flexchx.eu/pdf/D7_1_Market_Review_Report_Feb_2019.pdf

Green BTX flexibly from biomass

PCT/FI2016/050409, Method and apparatus for producing a chemical compound and a chemical compound and its use; TRL 3-4

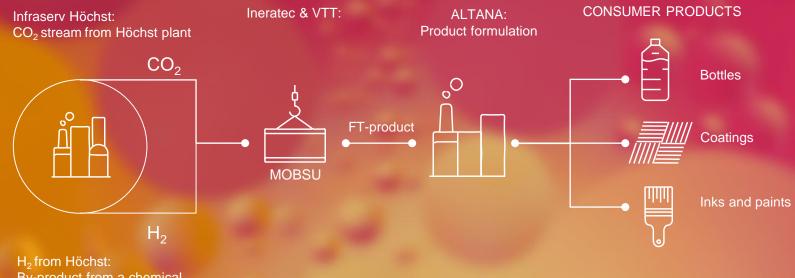
US2016237354A, WO15052379 A1, Method and apparatus for producing a hydrocarbon fraction and a hydrocarbon fraction and its use

VΤ

EARTO Innovation Award 2017 for Bio-BTX

EARTO Innovation Awards

VTT


CO₂ as a feedstock

https://www.spire2030.eu/ico2chem

By-product from a chemical production plant

beyond the obvious

Matti Reinikainen matti.reinikainen@vtt.fi +358 50 563 41378 @VTTFinland

www.vtt.fi

27/05/2019