FLEXCHX Potential of F-T Syncrude in European Refining Industry

COMSYN Workshop 23.5.2019

Mikko Wuokko NESTE ENGINEERING SOLUTIONS

Cleaner fuels on the roads Low-sulfur bunker fuel at sea Renewable solutions for the chemicals industry

Renewable jet fuel in the air

Neste Engineering Solutions

Neste Engineering Solutions is a leading technology, engineering and project management company. We provide advanced technologies, solutions and services to our customers.

Taking care of health, safety and the environment is essential in our actions.

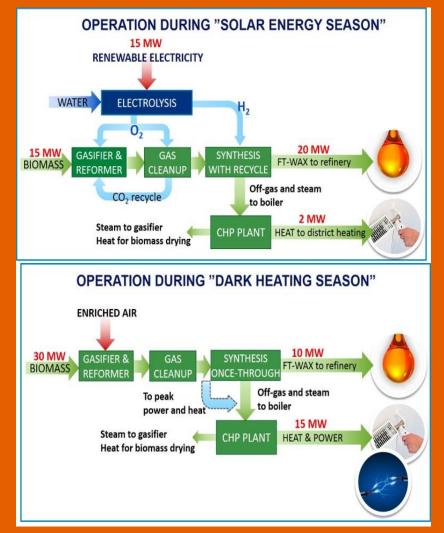
Flexible combined production of power, heat and transport fuels from renewable energy sources

FLEXCHX

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

- Funding scheme: RIA
- Duration: 36M, March 2018 February 2021
- H2020 funding: 4 489 545 €
- Coordinator: Esa Kurkela, VTT
- Project Officer: Daniel Maraver de Lemus
- Consortium: VTT (Finland), Enerstena (Lithuania), INERATEC (Germany), Deutsches Zentrum Fuer Luft -Und Raumfahrt e.V., Germany-DLR (Germany), HELEN (Finland), Kauno Energija (Lithuania), Lithuanian Energy Institute (Lithuania), NESTE Engineering Solutions (Finland), Johnson Matthey (UK) and Grönmark (Finland)

OBJECTIVE

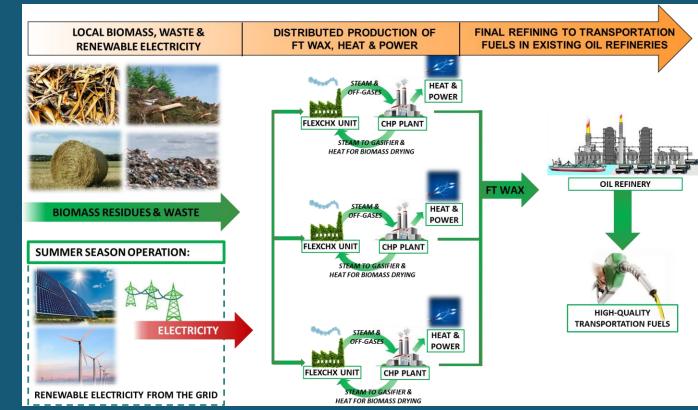


FLEXCHX

 FLEXCHX project presents an economical way to utilize CHPplants and district heating networks as part of the future European energy system.

 Tri-generation of power, heat and intermediate product (FT wax) for the transport sector is used to address the challenge of the poor match between the availability of solar energy and the demand for heating.

VISION


- To realise a process for optimal use of the seasonal solar energy supply and available biomass resources
- Satisfy the seasonal demand for heat and power, and to produce low-GHG fuels for the transport sector.

FLEXCHX

The conceptual idea of distributed production of heat, power and bio-FT products combined with centralized refining to high-quality transportation

fuels

Work Packages

WP1 Coordination and Management (VTT)

WP2 Concept development (ENERSTENA)

WP3 Gasification and raw gas cleaning (VTT)

WP4 Reforming and final syngas cleaning (JOHNSON MATTHEY)

WP5 Flexible FT synthesis (INERATEC)

WP6 Validation of the key enabling technologies (VTT)

WP7 Integration of FT products to refineries (NESTE ENGINEERING SOLUTIONS)

Petrašiūnai power-plant, Lithuania

SXB pilot plant, VTT, Finland

FLEX

Contents

- 1. Objectives of NES work
- 2. Introduction
- 3. F-T syncrude co-processing
- 4. Product market
- 5. Integration cases
- 6. Next steps for NES work

nes

1. Objectives

Objectives of NES work Integration of FT products to refineries

Completed work in Task 7.1

- 1. What refinery units and other processing plants (e.g. biofuel facilities based on HVO) can process F-T syncrude?
- 2. How is it (technically) feasible to introduce F-T syncrude into refineries?
- 3. What are the market conditions for the European refining industry and potential products derived from F-T syncrude?
- 4. What are the most likely partnership opportunities?

Next steps

- 1. Task 7.2: Case studies and business concepts
- 2. Task 7.3: Risk assessment for using F-T products in final refining of transport fuels

2. Introduction

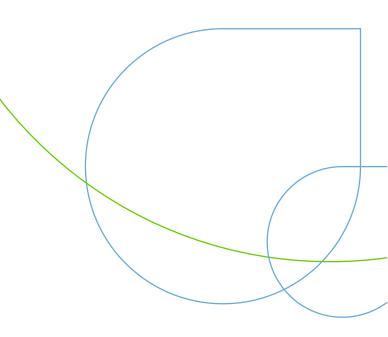
Introduction

- FLEXCHX units produce Fischer-Tropsch synthesis product, so-called F-T syncrude
- The FLEXCHX unit uses cobalt-based low temperature Fischer-Tropsch synthesis
 → the baseline for this study was the composition of Co-LTFT syncrude, derived from literature
- At the FLEXCHX unit the syncrude downstream processing involves cooling, resulting in **three syncrude fractions**
 - Naphtha,
 - Distillate and
 - Wax
- **Eight different co-processing pathways** for FLEXCHX syncrude were defined for seven product
- The potential integration facilities were an oil refinery, steam cracker and an HVO plant
- The **European product market** for interesting products was defined, including current demand, market outlook and supply structure

Studied FLEXCHX F-T syncrude co-processing product opportunities

Oil refinery

- Motor-gasoline
- Diesel
- Jet fuel


Steam cracker

- Ethylene
- Propylene

HVO plant

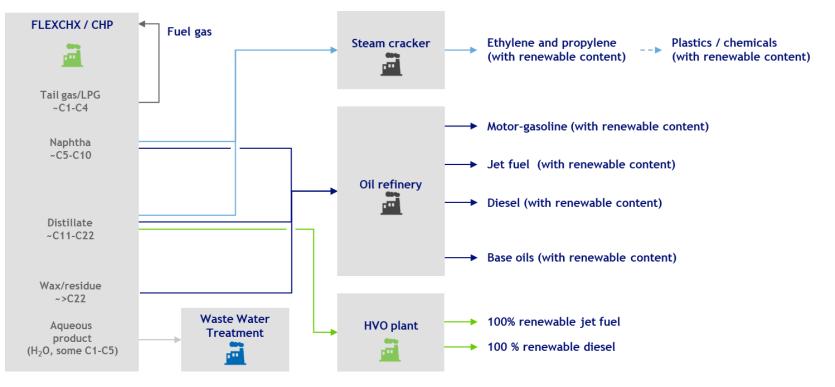
- Renewable diesel
- Renewable jet

3. F-T syncrude coprocessing

Definition of FT syncrude

- FLEXCHX syncrude composition was estimated in order to estimate suitability for different coprocessing methods
- Assumed composition was cobalt-based low-temperature Fischer-Tropsch syncrude derived from literature

Product fraction	Carbon range	Share of product fraction (%)
Tail gas	C1-C2	7
LPG	C3-C4	5
Naphtha	C5-C10	20
Distillate	C11-C22	22
Wax	>C22	44
Aqueous product	C1-C5	2



F-T syncrude fractionation scheme

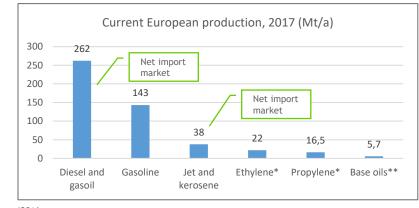
NESTE

Potential FLEXCHX syncrude integration pathways

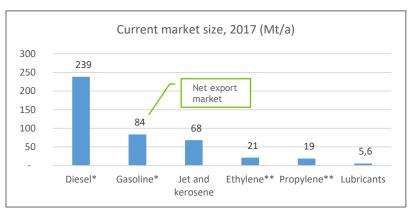
NESTE

F-T syncrude co-processing suitability

F-T fraction to be co- processed	Main product	Integration facility	Co-processing suitability	Investment needs	Technical attractiveness	
F-T naphtha Motor gasoline		Oil refinery	No major technical limitations	No major investment needs	Good	
F-T distillate	Diesel	Oil refinery	Possibly suitable for direct blending Cold flow properties a limiting factor	Isomerization required for high blends	Good/ Adequate	
F-T distillate	Renewable diesel	HVO plant	No major technical limitations	No major investment needs expected	Good	
F-T distillate	Jet fuel	Oil refinery	Expected poor cold flow properties for product with existing refinery units	Isomerization required for high blends	Poor	
F-T distillate	Renewable jet fuel	HVO plant	No major technical limitations Isomerization typically included in HVO plants	No major investment needs expected	Good	
F-T wax	Base oils	Oil refinery	Hydroprocessing base oil unit required	No major investment needs expected	Good	
F-T wax	Transportation fuels	Oil refinery	No major technical limitations	No major investment needs expected	Good	
F-T naphtha and/or distillate	Ethylene and propylene	Steam cracker	Olefins in feed can cause coking Pre-treatment possibly required	Possibly hydrotreatment required as feed pre-treatment	Adequate/Poor	



4. Product market

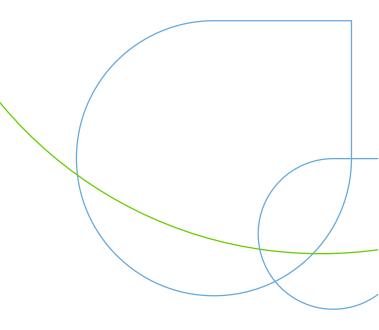


Market introduction

- · Current and future markets were evaluated for
 - Transportation fuels: Diesel, gasoline, jet fuel
 - Other products: Ethylene, propylene and base oils/lubricants
- The study focused on European markets
- The combined market size for these products is 440 Mt/a
- There is a major diesel-gasoline imbalance in Europe (demand and import high for diesel, supply and export high for gasoline)
 - Due to refinery configuration and long-declining gasoline demand
- The demand of renewable fuels is mainly driven by targets to reduce carbon emissions and related mandatory quotas for renewable energy share in transport

*2016 **capacity

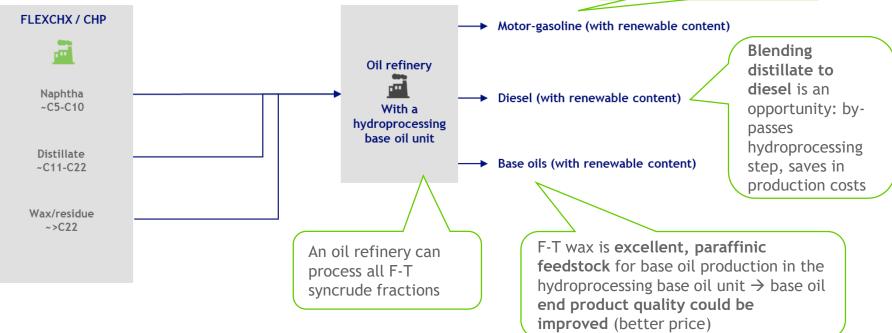
*Includes renewables


**2016

Market summary

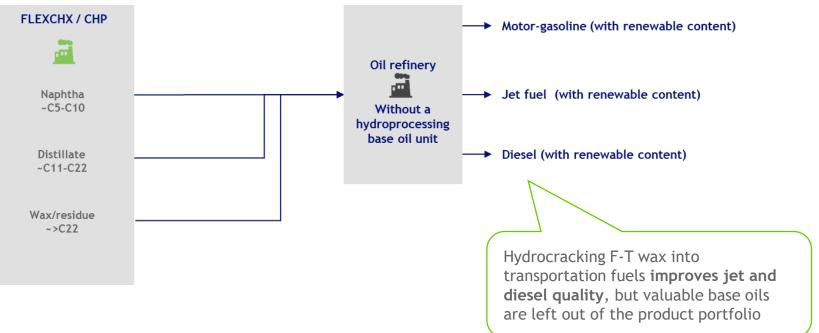
	European market size 2017, Mt/a	Market prospects, CAGR %/a up to 2035	Growth hindering factors for fossil products	Share of renewables in Europe	Demand drivers and trends for renewables	Substituting renewable solutions	Fossil/ Renewable product price EUR/t	Overall market attractiveness for a renewable product up to 2035	Overall market attractiveness for a renewable product post 2035
Jet and kerosene	68 Mt/a	0,5	More efficient aircrafts, higher oil prices, marine bunker demand increase	Only small volumes in test and local flights	Increasingly ambitious renewable energy share targets	Renewable aviation fuel	560 Significant higher price (due to cost)	Medium → High	High
Diesel	239 Mt/a	-1,0	More efficient vehicles, electric cars, diesel bans	Ca. 5 %	Increasingly ambitious renewable energy share targets	Biodiesel (FAME), Renewable diesel (HVO)	530 1 270 (HVO)	Medium	High in segments using diesel, e.g. heavy duty transport
Motor- gasoline	86 Mt/a	-1,5	More efficient vehicles, electric cars	Ca. 5 %	Increasingly ambitious renewable energy share targets	Ethanol, other oxygenates, biogasoline	555 660 (ethanol)	Medium	Low
Base oils	5,6 Mt/a	1 (globally 2016 to 2031)	Dependency on automotive industry	None	More environmentally friendly product opportunity	Renewable base oils (based on vegetable oils)	825 (Group III)	Medium	Medium
Ethylene	25 Mt/a	0,0 (2016 to 2021)	Strong competition from ethylene derivatives from U.S. and China	None	Brand owners' willingness to develop renewable consumer products	Bio-ethylene (from ethanol)	1100	Low	Low (unless production costs decrease)
Propylene	17 Mt/a	0,6 (2016 to 2021)	Strong competition from propylene derivatives from U.S. and China	None	Brand owners' willingness to develop renewable consumer products	Bio-propylene (not in production)	940	Low	Low (unless production costs decrease)

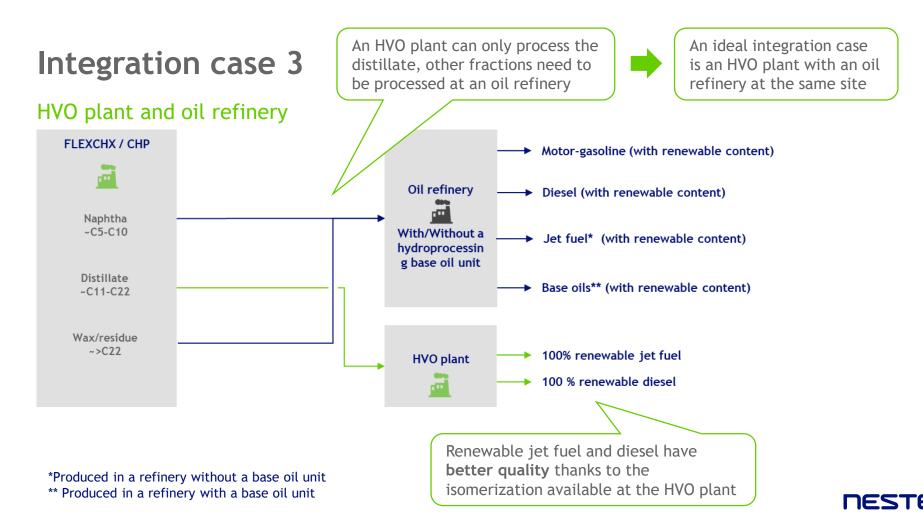
5. Integration cases



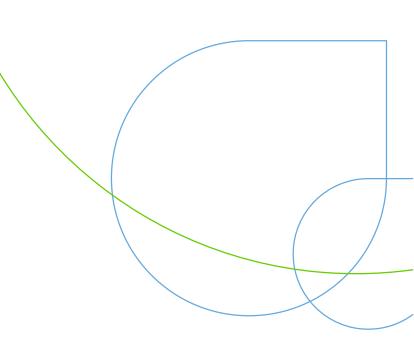
Integration case 1

Oil refinery with a hydroprocessing base oil unit


Gasoline production (catalytic reforming) is sensitive to heavy components → naphtha fraction quality needs to be considered


NESTE

Integration case 2


Oil refinery without a hydroprocessing base oil unit

NESTE

6. Next steps for project

Work continues with business concepts

Task 7.2 - Case studies and business concepts

Objectives:

- What is the most optimal scenario of utilizing F-T syncrude in a refinery/HVO plant
- Planning of how to realize the required process changes and how to increase the capacity gradually
- Estimating the maximum price of FT wax from downstream operation (refiners or other upgraders) perspective (in the present and future European energy system)
- Identification of possible business cases and partnerships between CHP and refinery industries

Main work method is collaboration with refinery and CHP plant partners

Thank you.

