wood.

Techno-Economic Studies for COMSYN process

Vincenzo Tota, Arianna Osio

20th January, 2021

Main Agenda

- Introduction to Wood
- Overview of Comsyn concept
- Validation of the concept at industrial scale
- Basis of Techno-Economic assessment
- Rewiew of Heat integration concept
- Results of preliminary techno-economic assessment
- Next steps

Introduction to Wood

wood.

Full services provider

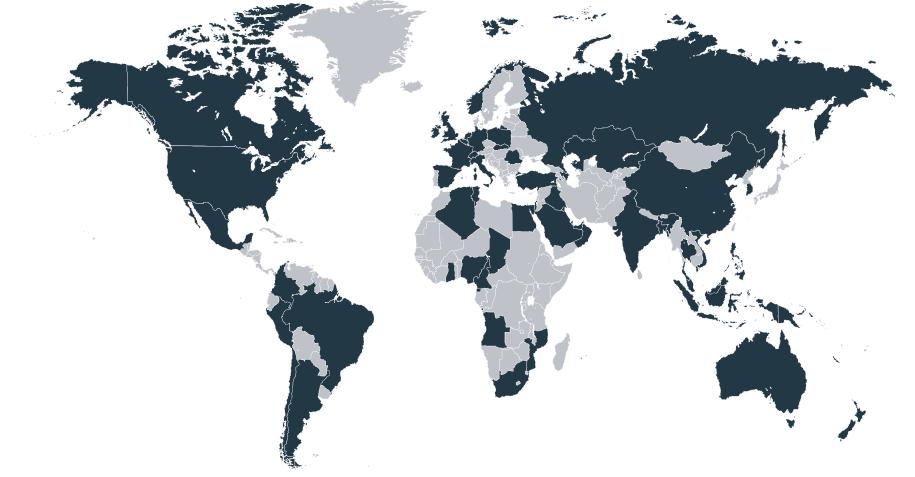
Consulting

4

- Economic analyses
- Acquisition studies
- Feasibility assessments
- Market research, segmentation and pricing analyses
- Environmental and permitting
- Due diligence marketing and customer reviews
- Supply/demand analyses
- New technology evaluations

Engineering

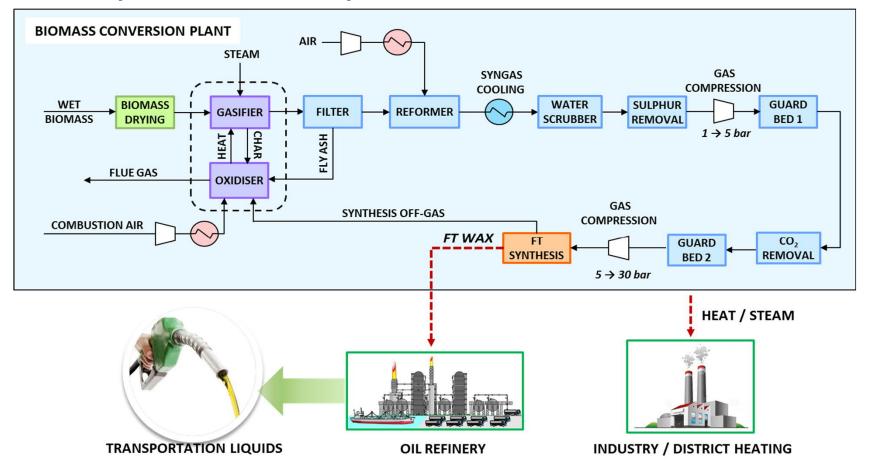
- Planning
- Engineering all disciplines
- Design
- Project support
- Supply chain management
- Commissioning & start-up
- Process simulation and modeling



Project Delivery

- Planning and support
- Cost management
- Risk management
- Procurement
- Vendor surveillance
- EPC
- General contractor
- Construction management
- Integrated safety program

Our global footprint


wood.

Overview of COMSYN plant concept

6

wood.

COMSYN plant concept

wood

A presentation by Wood.

Concept validation at industrial scale

8

wood.

Validation at industrial scale

Full Process Engineering Design Package

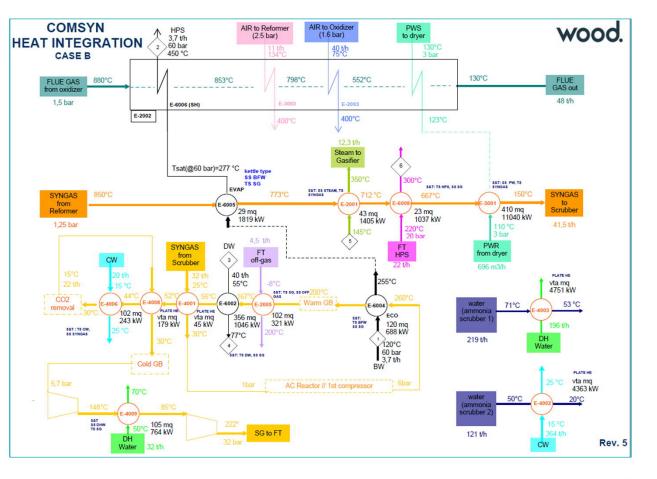
- Process Flow Diagrams
- Heat & Mass Balance
- Equipment list:
 - Main dimensions / sizing parameters
 - Material Of Construction
- Equipment Datasheets
- Control operating philosophy
- CAPEX and OPEX estimate

Main basis & assumptions

wood.

Main basis & assumptions

- Feedstock: forest residue
- Plant capacity: 100 MWt as feedstock thermal input, i.e approx. 31 kta of biocrude production
- Excess heat used for:
 - District Heating supply
 - Internal Power generation for plant own needs
- Configuration cases:
 - Case 1 : No CO2 removal
 - Case 2 : Partial CO2 removal (approx. 80%)
- Plant life: 20 years
- Target IRR for calculation of production cost: 12%
- Plant onstream factor: 94%



Heat Integration Review

Heat Integration Review

Heat integration in COMSYN is crucial for energy optimization:

- Heat rejection from FT
 reactions
- Heat recovery form Syngas Cooling and Oxidizer Flue Gas
- FT offgas re-use
- DH production and Steam Integration with Power Plant

wood

Main results & conclusions

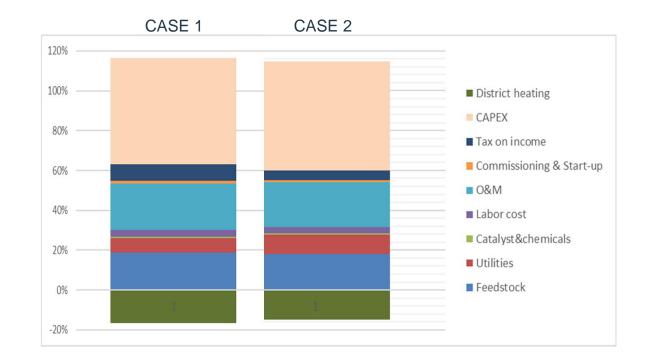
A presentation by Wood.

wood.

Main Results

- Case 2, compared to Case 1:
 - Higher CAPEX (reduction in FT is overcome by the increase in the syngas treatment)
 - Higher OPEX (effects of optimized FT operation are overcome by O&M cost increase in the other units)
- Sensitivities to:
 - Financial Leverage
 - Target IRR

Results Summary				
	Case 1 No CO2 capture		Case 2 80% CO2 Capture	
CAPEX (M€)	186.0		199.0	
O&M Cost (M€/y)	22.32		23.37	
Financial Leverage	None	50%	None	50%
Bio-crude Prod. Cost (€/I)	1.22	1.06	1.33	1.15


Results Summary

Main Results

Production Cost breakdown:

- Case 1 and Case 2 show the same behaviour
- Highest contribution by:
 - CAPEX
 - O&M (other than feedstock)
 - feedstock



Conclusions

Preliminary results show that:

- The estimated bio-crude production cost is promising but still higher than the initial project target (bio-fuel @ 0.8 €/I)
- The CO2 capture does not appear to be beneficial for the overall technoeconomic perfomance

More in-depth analysis will be carried out in the next months (study of business cases)

A presentation by Wood.

17

wood.

Next steps for COMSYN

18

wood.

Next steps – Business Study Cases

Northern Europe case:

- Feedstock: forest residue (e.g. bark)
- Plant size: 150-200 MWt (feedstock)
- DH generation
- Steam Integration with pulp mill / sawmill
- Possible sale of excess offgas to lime kilns

Central Europe case:

- Feedstock: agricultural residue (e.g. straw)
- Plant size: 150-200 MWt (feedstock)
- DH generation
- Steam Integration with industries (paper mill / chemical plant)

Thank you! Any questions?

COMSYN project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 727476.

wood.