## **COMSYN/FLEXCHX online Workshop Hot gas filtration** 19.01.2021 Harald Balzer





>GKN manufacturing process overview

Material and Process development

> Powder and filter specification

>Filter operation studies

#### Manufacturing process



>Aim: Material and Process development of a corrosion and heat resistant FeCrAlSi-Alloy as filter material for Sulfur containing gases up to 900°C



#### Heat treatment development

- New material critical for heat treatment process: liquid phase formation depending on temperature
- Roundness (important for welding operation and high burst pressure), straightness (important for max. pitch in the filter plate) often not sufficient
- Heat treatment frame and proper chosen heat treatment parameter stabilizes the filter during sintering
- Continuously enlarging the filter length from 1000 up to 1550 mm length



Heat treatment frame and delivered 1.2m filter elements



#### COMSYN

#### Secondary operation: laser welding

- > Welding development: laser welding porous filter material and solid connectors or Filter plate
- > Before positioning in filter plate the filter end is turned to achieve the needed roundness
- Results for laser welding on a pre heated device: much less micro cracks on the slope marked on the filter element









### COMSYN

#### Typical values for fine and coarse filter quality

Si ~2,5



FeCrAlSi (1.4767 mod.)

Material:

| Chem. Composition [M-%]:                                 |                  | Fe                    | Cr                    | Al  |
|----------------------------------------------------------|------------------|-----------------------|-----------------------|-----|
|                                                          |                  | Bal.                  | 19~22                 | 4~5 |
|                                                          |                  |                       | 1                     |     |
| Application Temperature [°C]: (in<br>oxidising media)    |                  | max. 900°C            |                       |     |
| Filter Grade SIKA                                        |                  | RHT 2IS               | RHT 12IS              |     |
| Grade Efficiency [μm]*:<br>x <sub>τ</sub> = 95% (0,1m/s) |                  | 0,25                  | 0,5                   |     |
| Density [g/cm³]:                                         |                  | 4,8                   | 4,4                   |     |
| Porosity [%]:                                            |                  | 30                    | 40                    |     |
| Flow [m³/m²/h]:                                          |                  |                       | 25                    |     |
| Bubble Point [mbar]:                                     |                  | 40                    | 20                    |     |
|                                                          | d <sub>min</sub> | 1                     | 2                     |     |
| Pore size distribution:                                  | MFP              | 5                     | 14                    |     |
| [µm]                                                     | d <sub>max</sub> | 18                    | 37                    |     |
| Permeability coefficient                                 | α [m²]           | 4,1*10 <sup>-12</sup> | 5,5*10 <sup>-12</sup> |     |
|                                                          | ß [m]            | 0.9*10 <sup>-6</sup>  | 1 3*10 <sup>-6</sup>  |     |



Typical water atomized powder shape





#### **COMSYN project: process flow chart**





Fur Luft - und Raumfahrt German Aerospace Center

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727476

**Technology development** 

GKN SINTER METALS





Opened filter vessel at VTT site

#### **Filter operation studies**





- Filter blinding was encountered in some set points – particularly with wood pellet
- The combination of high tar load and low particulate concentration are particularly favorable conditions for filter blinding.





# Metallographic examination of the used filter element



- > After 300 hours of operation in biomass gasification conditions, one of the filter elements was removed from the filter unit and examined at GKN.
- Ashes were found only on top of the filter element
- No material inside the pores proper filter grade was selected



#### BSE image of filter cross section





#### Summary and outlook



- > Main process steps in atomizing, compaction, heat treatment and laser welding were successfully developed during COMSYN project
- > The actual max. length of the filter elements is 1550mm
- Stable filtration is possible if filter clogging with tar can be prevented (12µ filter grade in liquids)
- Metallographic investigations after long term tests show no corrosion during operation. No corrosive species (Chlorine, Alkaline and esp. Sulphur) were found inside the filter material
- Future development will focus on evaluation of new filter material in multifuel processes (e.g. municipal waste) and scale up the filter systems for small and medium sized gasification plants (1-50 MW)



