

Advances in the techno-economic assessment to identify the ideal plant configuration of a new biomass-to-liquid process

29th European Biomass Conference & Exhibition

<u>Simon Maier¹</u>, Ralph-Uwe Dietrich¹, Sanna Tuomi², Esa Kurkela², Johanna Kihlman², Pekka Simell², Tim Böltken³

¹ German Aerospace Center (DLR)
 ² VTT Technical Research Centre of Finland
 ³ INERATEC GmbH

27th of April 2021

Knowledge for Tomorrow

COMSYN – Compact Gasification and Synthesis process for Transport Fuels www.comsynproject.eu – EU No. 727476

New BtL production concept with biofuel production **cost reduction** up to 35 % compared to alternative routes (Project goal: < 1.05 €/kg production cost for diesel)

PRIMARY CONVERSION Decentralized FT wax production at small-tomedium scale units located close to biomass resources (50-150 MW_{th} input) + locally utilized excess heat for 80+ % overall efficiency

Techno-economic and ecological evaluation at DLR

Albrecht et al. (2016) - A standardized methodology for the techno-economic evaluation of alternative fuels – A case study, Fuel, 194: 511-526
 Mutel (2017) - Brightway: An open source framework for Life Cycle Assessment, Journal of Open Source Software, 2(12): 236

COMSYN – Compact Gasification and Synthesis process for Transport Fuels Process concepts

Case	ľ
Lase	

Case 2

Case 3

- Base case
- Autothermal reforming with air
- Autothermal reforming with air
- **CO₂ removal** after guard bed
 - Operating at 6 bar
 - \geq 80 % CO₂ is removed

- Allothermal steam reforming
 - Required heat is provided by an additional burner
- Steam is led into the reformer

Process flowsheet model

TEPET Results Techno-economic assessment of process concepts

100 MW biomass input		Case 1	Case 2	Case 3
Electricity demand	MW	11.4	12.3	9.1
Steam + Distr. heating	MW	39.7	38.7	47.7
Product output	MW	51.4	50.6	38.1
BtL efficiency	%	46.1	45.1	35.0
Energetic efficiency	%	81.7	79.3	78.7

Boundary conditions			
Base year		2019	
Full load hours	h/a	8260	
Interest rate	%	10	
Electricity costs	€/MWh	60	
Biomass costs	€/GJ	11.3	
District heating revenue	€/MWh	30	
Process steam revenue	€/MWh	36.2	
Labor costs	€/h	28.94	

TEPET Results Techno-economic assessment of process concepts

100 MW biomass input		Case 1	Case 2	Case 3
Electricity demand	MW	11.4	12.3	9.1
Steam + Distr. heating	MW	39.7	38.7	47.7
Product output	MW	51.4	50.6	38.1
BtL efficiency	%	46.1	45.1	35.0
Energetic efficiency	%	81.7	79.3	78.7

Boundary conditions			
Base year		2019	
Full load hours	h/a	8260	
Interest rate	%	10	
Electricity costs	€/MWh	60	
Biomass costs	€/GJ	11.3	
District heating revenue	€/MWh	30	
Process steam revenue	€/MWh	36.2	
Labor costs	€/h	28.94	

Process flowsheet model

Various heating and cooling units require heat integration

TEPET – Heat integration

The process concept yields in a high amout of excess heat

 \rightarrow Heat integration options have to be evaluated technically and economically

	Electricity generation	Process steam & District heating
SC0	0.0 MW	42.2 MW_{th}
SC1	2.8 MW	$37.8 \text{ MW}_{\text{th}}$
SC2	9.7 MW	$30.2 \text{ MW}_{\text{th}}$
SC3	12.7 MW	$0.0~{ m MW}_{ m th}$

TEPET – Results

Techno-economic comparison of different steam cycle modes

Selection of heat utilisation method strongly dependent on revenue for process steam & district heating

	Electricity generation	Process steam & District heating
SC0	0.0 MW	42.2 MW_{th}
SC1	2.8 MW	$37.8 \text{ MW}_{\text{th}}$
SC2	9.7 MW	$30.2 \text{ MW}_{\text{th}}$
SC3	12.7 MW	$0.0 \ MW_{th}$

TEPET – Results Techno-economic comparison of different steam cycle modes

Selection of heat utilisation method strongly dependent on revenue for process steam & district heating

	Electricity generation	Process steam & District heating
SC0	0.0 MW	42.2 MW_{th}
SC1	2.8 MW	$37.8 \text{ MW}_{\text{th}}$
SC2	9.7 MW	$30.2 \text{ MW}_{\text{th}}$
SC3	12.7 MW	$0.0 \ MW_{th}$

TEPET – Results

Identification of potential sweet spots and their most feasible process configuration

- Assumptions:
 - Bark as biomass feedstock
 - 200 MW max. plant scale (84 t/h)
 - 20 years of plant lifetime
 - 8260 h/a operation
 - 10 persons per shift
 - 10% interest rate
 - Heat market for district heating available
 - Product refining at Litvinov ORLEN UniPetrol refinery (14 wt.% losses)

Data based on: Ruiz (2019), ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials [3]

Summary & Outlook

- Advances in techno-economic methodology allow ...
 - to screen potential regions while including all site-specific boundary conditions
 - Technical parameter variations while tracking economic impacts

- Apply methodology for any other process conept on biomass feedstock
- Ecologcial assessment has to be taken into account (4CO.14 Julia Weyand, DLR)

Data based on: Camia (2018), Biomass production, supply, uses and flows in the European Union

References

- ¹⁾ Albrecht et al. (2016), A standardized methodology for the techno-economic evaluation of alternative fuels.
- ²⁾ Mutel et al. (2017) Brightway: An open source framework for Life Cycle Assessment, Journal of Open Source Software, 2(12): 236
- ³⁾ Ruiz et al. (2019), ENSPRESO an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials [3]

Thank you!

German Aerospace Center (DLR) Institute of Engineering Thermodynamics

COMSYN

COMSYN project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727476

Knowledge for Tomorrow